
| 國立中  | 央大學九十二學年度 | 碩士班考試 | 入學招生計寫出 | 41. 7        |    |
|------|-----------|-------|---------|--------------|----|
| 系所別: |           | •     | 加工机规范   | 共 <u>之</u> 頁 | 第頁 |
|      | 数學系       | 科目:   | 抽象代數    |              |    |

## 以下各題,只給答案,沒有說明,不給分

In the following, the symbols  $\mathbb Q$  and  $\mathbb C$  denote the fields of rational numbers and complex numbers as usual.

- 1. Determine whether or not the following statements is correct. Explain your answers.
  - (a) (4分) For any given positive integer n there exists a finite group of order n.
  - (b) (6分) For any given positive integer n there are only finitely many non-isomorphic groups of order n.
- 2. Let G be a non-Abelian (non-commutative) group and let A be a cyclic group. Assume that G has an action \* on A which satisfies (1)  $(\sigma\tau)*$   $a = \sigma*(\tau*a)$  for all  $\sigma, \tau \in G$  and all  $a \in A$ ; and (2)  $\sigma*(ab) = (\sigma*a)(\sigma*b)$  for  $\sigma \in G$  and  $a, b \in A$ .
  - (a) (8分) Show that the action \* induces a group homomorphism from G to  $\operatorname{Aut}(A)$  where  $\operatorname{Aut}(A)$  is the automorphism group of A.
  - (b) (4分) Show that there exist a non-trivial normal subgroup H of G of finite index (that is,  $\{e\} \neq H \triangleleft G$  and [G:H] is finite) so that  $\sigma * a = a$  for all  $\sigma \in H$  and all  $a \in A$ .
  - (c) (4  $\Re$ ) Suppose that A is an infinite cyclic group. Show that the index [G:H] of H in G is either one or two.
- 3. Let p be a prime number and let  $S_p$  be the symmetric group on p symbol
  - (a) (10 分 ) Determine the number of p-Sylow subgroups of  $S_p$  ( Hipp first show that  $S_p$  has (p-1)! elements of order p).
  - (b) (8分) What are the numbers of p-Sylow subgroups of  $S_{p+i}$  for any i such that  $1 \le i \le p-1$ ? You need to explain your answer.
- 4. Let R be a finite ring.
  - (a) (7分) Can R be an integral domain if R has order |R|=36? Why?
  - (b) (7分) What should be a necessary condition for the order of R so that R can be an integral domain? Explain your answer.
- 5. Let F be a field. Let  $f_1(x), f_2(x), \ldots, f_n(x) \in F[x]$  be polynomials which are not all zero. The G.C.D. of  $f_1(x), f_2(x), \ldots, f_n(x)$  is defined to be the monic polynomial of

