國立中央大學九十二學年度碩士班考試入學招生試題卷 共2頁第2頁

系所別: 數學系 科目: 抽象代數

maximal degree among common divisors of $f_1(x), f_2(x), \ldots, f_n(x)$. Denote the G.C.D. by $gcd(f_1(x), f_2(x), \ldots, f_n(x))$. Prove

$$\gcd(f_1(x), f_2(x), \dots, f_n(x)) = \sum_{i=1}^n a_i(x) f_i(x)$$
 for some $a_i(x) \in F[x], i = 1, \dots, n$

by completing the following steps.

- (a) (12 %) Show that F[x] is a principal ideal domain.
- (b) (8%) Let \mathcal{A} be the ideal generated by $f_1(x), f_2(x), \ldots, f_n(x)$. Show that \mathcal{A} is also generated by $\gcd(f_1(x), f_2(x), \ldots, f_n(x))$ and conclude that

$$gcd(f_1(x), f_2(x), \ldots, f_n(x)) = \sum_{i=1}^n a_i(x) f_i(x).$$

- 6. (10%) Let a, b be relatively prime non-zero integers such that at least one of a, b is not ± 1 . Assume that both a and b are square free integers. Is it true that the polynomial $ax^m b$ is irreducible in $\mathbb{Q}[x]$ for every positive integer m? Explain your answer. Note. An integer n is called square free if it has that property that for prime p with $p \mid n$ then $p^2 \nmid n$.
- 7. (12%) Let P(x) be an irreducible polynomial in $\mathbb{Q}[x]$. Let $r \in \mathbb{C}$ be a root of P(x).

$$\alpha = \frac{a_n r^n + \dots + a_1 r + a_0}{b_m r^m + \dots + b_1 r + b_0} \text{ where } a_i, b_j \in \mathbb{Q} \text{ and } b_m r^m + \dots + b_1 r + b_0 \neq 0.$$

Prove or disprove that there exists a polynomial $f_{\alpha}(x) \in \mathbb{Q}[x]$ such that $\alpha = f_{\alpha}(r)$.

