國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第2頁

所別:數學系碩士班 不分組科目:線性代數

- (a) (10 分) Show that $\langle \cdot, \cdot \rangle$ is an inner product on V.
- (b) (7分) What is the adjoint operator T_A^* of T_A ? Explain your answer.
- (c) (8分) Let $W = \{X \in V; \text{Tr}(X) = 0\}$. Compute the orthogonal complement W^{\perp} of W by giving an orthonomal basis for W^{\perp} . What is dim W^{\perp} ? Explain your answer.

5. (15
$$\Re$$
) Let $L_i(x_1, x_2, ..., x_n) = \sum_{j=1}^n a_{i,j} x_j, \ a_{i,j} \in \mathbb{R} \text{ for } i = 1, ..., m.$ Let
$$W = \{(b_1, ..., b_n) \in \mathbb{R}^n; L_i(b_1, ..., b_n) = 0\}$$

be the subspace of \mathbb{R}^n determined by the common zeros of the linear functionals L_1, L_2, \ldots, L_m . Let $f(x_1, x_2, \ldots, x_n)$ be a linear functional such that $f(b_1, \ldots, b_n) = 0$ for all $(b_1, \ldots, b_n) \in W$. Prove or disprove that there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$ such that $f = \sum_{i=1}^m \lambda_i L_i$

