

國立中央大學94學年度碩士班考試入學試題卷 共工頁 第一頁

所別:數學系碩士班 甲組 科目:高等微積分

(1) Find

(a)
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}$$
; (10%)

(b)
$$\lim_{n \to \infty} (1 + \frac{1+x+x^2+\dots+x^n}{n})^n$$
, $|x| < 1$. (10%)

- (2) If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function; f(f(x)) = x for all real x. Show that there exists $\xi \in \mathbb{R}$ such that $f(\xi) = \xi$. (10%)
- (3) If $f: \mathbb{R} \to \mathbb{R}$ is continuous, show that

$$\int_0^x \left[\int_0^u f(t)dt \right] du = \int_0^x f(u)(x-u)du.$$
 (10%)

- (4) Let a > 1, b > 1, $f : \mathbb{R} \to \mathbb{R}$ is a bounded function and f(ax) = bf(x) for all real x.
 - (a) Find f(0). (5%)
 - (b) Show that f is continuous at 0. (10%)
- (5) Let $f(x) = \int_0^\infty \frac{e^{-xt^2}}{1+t^2} dt$, $x \in (0, \infty)$. Show that f(x) is uniformly convergent and differentiable on $(0, \infty)$. (10%)
- (6) (a) Does series of functions $\sum_{n=1}^{\infty} e^{-nx} \sin(\frac{x}{n})$ converges uniformly on $[0, \infty)$? Give your proof. (10%)
 - (b) Determine whether the function $f(x) = \sum_{n=1}^{\infty} e^{-nx} \sin(\frac{x}{n})$ is uniformly continuous on [0, 10]. Give your reason. (5%)
- (7) Let $f_0: [0,1] \to \mathbb{R}$ be a continuous function. For each $n=1,2,3,\cdots$, let $f_n(x)=\int_0^x f_{n-1}(t)dt$ for all $x\in [0,1]$. If for every $x\in (0,1)$, there exists an n such that x is an interior point of $f_n^{-1}(\{0\})$, prove that $f_0\equiv 0$ on [0,1]. (10%)
- (8) Determine whether in the system of equations

$$xv^{2} + yu + x^{2}u^{2} + y^{3}v = 0,$$

$$x^{2}u^{6} + yv^{3} + x^{3}y^{2} + uv^{2} = 0.$$

u and v are solvable in terms of x and y near x=-1,y=1,u=1,v=-1. If this can be done, compute $\frac{\partial v}{\partial x}(-1,1)$ and $\frac{\partial u}{\partial y}(-1,1)$. (10%)