Analysis

1. (Arithmetic mean > geometric mean)

$$x_1, x_2, \dots, x_n > 0$$
, $\alpha_1, \alpha_2, \dots, \alpha_n > 0$, $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$. Show that $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \ge x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$.

Proof:

 $f(x) = -\ln x$ is convex on $(0, \infty)$

$$(:: f'(x) = -\frac{1}{x} \Rightarrow f''(x) = \frac{1}{x^2} \Rightarrow f(x) \text{ is convex })$$

$$\implies f(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) \le \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$$

i.e.
$$-\ln x(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) \le \alpha_1(-\ln x_1) + \dots + \alpha_n(-\ln x_n)$$

$$\implies -\ln x(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) \le -\ln(x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n})$$

$$\implies \ln x(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) > \ln(x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n})$$

$$\implies \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \ge x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

2. $A(i_1, i_2, \dots, i_m)$ is a nonnegative integer for $i_1 = 1, 2, \dots, n$,

$$i_2 = 1, 2, \dots, n, \dots, i_m = 1, 2, \dots, n.$$
 $(m \ge 2)$

Let

$$S(a_1, a_2, \dots, a_m) = \sum_{i_1=1}^n A(i_1, a_2, \dots, a_m) + \sum_{i_2=1}^n A(a_1, i_2, \dots, a_m)$$

:

$$+\sum_{i_m=1}^n A(a_1, a_2, \cdots, i_m)$$

Suppose $S(a_1, a_2, \dots, a_m) \ge n$ whenever $A(a_1, a_2, \dots, a_m) = 0$

Let
$$S = \sum_{i_1=1}^{n} \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} A(i_1, i_2, \cdots, i_m)$$

Show that
$$S > \frac{n^m}{m+1}$$

Proof:

For any $k, 1 \le k \le m$,

$$\sum_{a_1=1}^n \sum_{a_2=1}^n \cdots \sum_{a_m=1}^n \sum_{i_k=1}^n A(a_1, \dots, i_k, \dots, a_m)$$

$$= \sum_{a_1=1}^n \sum_{a_2=1}^n \cdots \sum_{a_{k-1}=1}^n \sum_{a_k=1}^n \sum_{a_{k+1}=1}^n \cdots \sum_{a_m=1}^n \sum_{i_k=1}^n A(a_1, \dots, i_k, \dots, a_m)$$

$$= \sum_{a_1=1}^n \sum_{a_2=1}^n \cdots \sum_{a_{k-1}=1}^n n \left(\sum_{a_{k+1}=1}^n \cdots \sum_{a_m=1}^n \sum_{i_k=1}^n A(a_1, \dots, i_k, \dots, a_m) \right)$$

$$= n \sum_{a_1=1}^n \sum_{a_2=1}^n \cdots \sum_{a_{k-1}=1}^n \sum_{a_{k+1}=1}^n \cdots \sum_{a_m=1}^n \sum_{i_k=1}^n A(a_1, \dots, i_k, \dots, a_m)$$

$$= nS$$

$$\Rightarrow \sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{n} \cdots \sum_{a_{m}=1}^{n} S(a_{1}, a_{2}, \cdots, a_{m})$$

$$= \sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{n} \cdots \sum_{a_{m}=1}^{n} \sum_{i_{1}=1}^{n} A(i_{1}, a_{2}, \cdots, a_{m})$$

$$+ \sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{n} \cdots \sum_{a_{m}=1}^{n} \sum_{i_{2}=1}^{n} A(a_{1}, i_{2}, \cdots, a_{m})$$

$$+ \cdots$$

$$+ \sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{n} \cdots \sum_{a_{m}=1}^{n} \sum_{i_{m}=1}^{n} A(a_{1}, a_{2}, \cdots, i_{m})$$

$$(\because \text{ by def of } S(a_{1}, a_{2}, \cdots, a_{m}))$$

$$= mnS \cdots \cdots (1)$$

Let
$$Z = |\{(i_1, \dots, i_m) : A(i_1, \dots, i_m) = 0\}|$$

Then $S + Z \ge \sum_{a_1=1}^n \sum_{a_2=1}^n \dots \sum_{a_m=1}^n 1$ (why?)
 $= n^m$

$$\Rightarrow Z \ge n^m - S \quad \cdots \quad (2)$$

$$S(a_{1}, a_{2}, \dots, a_{m}) = \sum_{i_{1}=1}^{n} A(i_{1}, a_{2}, \dots, a_{m})$$

$$+ \sum_{i_{2}=1}^{n} A(a_{1}, i_{2}, \dots, a_{m})$$

$$+ \dots$$

$$+ \sum_{i_{m}=1}^{n} A(a_{1}, a_{2}, \dots, i_{m})$$

$$\geq A(a_{1}, a_{2}, \dots, a_{m})$$

$$+ A(a_{1}, a_{2}, \dots, a_{m})$$

$$+ \dots$$

$$+ A(a_{1}, a_{2}, \dots, a_{m}) \quad (why?)$$

$$= mA(a_{1}, a_{2}, \dots, a_{m}) \quad \dots \dots (3)$$

$$\sum_{a_{1}=1}^{n} \sum_{a_{2}=1}^{n} \cdots \sum_{a_{m}=1}^{n} S(a_{1}, \cdots, a_{m}) = \sum_{(a_{1}, \cdots, a_{m})} S(a_{1}, \cdots, a_{m})$$

$$= \sum_{A(a_{1}, \cdots, a_{m})=0} S(a_{1}, \cdots, a_{m}) + \sum_{A(a_{1}, \cdots, a_{m}) \neq 0} S(a_{1}, \cdots, a_{m})$$

$$\geq Zn + \sum_{A(a_{1}, \cdots, a_{m}) \neq 0} mA(a_{1}, \cdots, a_{m})$$

$$= Zn + m \sum_{A(a_{1}, \cdots, a_{m}) \neq 0} A(a_{1}, \cdots, a_{m})$$

$$= Zn + m \sum_{(a_{1}, \cdots, a_{m})} A(a_{1}, \cdots, a_{m})$$

$$= Zn + mS$$

$$\geq (n^{m} - S)n + mS \quad (\because (2))$$

$$= n^{m+1} + (m-n)S \quad \cdots (4)$$

(1), (4)
$$\Rightarrow mnS \ge n^{m+1} + (m-n)S$$

 $\Rightarrow (mn+n-m)S \ge n^{m+1}$
 $\Rightarrow S \ge \frac{n^{m+1}}{mn+n-m} > \frac{n^{m+1}}{mn+n} = \frac{n^m}{m+1}$

3. Definition: If r > 0, $f: R \to R$ and f(x+r) = f(x) for all $x \in R$, then f is function with quasiperiod r.

Suppose r > 0, $g: R \to R$ such that g(x+r) - g(x) is a function with quasiperiod r. Assume that g is a bounded function. Show that g is with quasiperiod r.

Proof:

 $\implies q(x+r) = q(x) \text{ for all } x.$

Suppose
$$|g(x)| \leq C$$
 for all x . $g(x+r) - g(x)$ is a function with quasiperiod r

$$\implies g(x+r) - g(x) = g(x+2r) - g(x+r)$$

$$= g(x+3r) - g(x+2r)$$

$$\vdots$$

$$= g(x+(n+1)r) - g(x+nr)$$

$$\implies n(g(x+r) - g(x)) = g(x+(n+1)r) - g(x+r)$$

$$\implies (g(x+r) - g(x)) = \frac{1}{n} (g(x+(n+1)r) - g(x+r))$$

$$\implies |(g(x+r) - g(x))| \leq \frac{1}{n} |g(x+(n+1)r) - g(x+r)|$$

$$\leq \frac{1}{n} 2C$$

4. Let $\alpha > \beta > 0, \ f: R \to R, \ \text{and} \ \frac{\alpha}{\beta} = \frac{m}{n} \ \text{where} \ m, n \in \mathbb{N}.$

Suppose that $f(x + \alpha) - f(x)$ is a function with quasiperiod β Show that

- (1) $f(x+n\alpha)-f(x)$ is a function with quasiperiod $\alpha-\beta$
- (2) $f(x + mn(\alpha \beta)) f(x)$ is a function with quasiperiod $\alpha \beta$
- (3) f(x) is a function with period $mn(\alpha \beta)$ if f is a bounded function.

Proof:

Note: $f(x + \alpha) - f(x)$ is with quasiperiod β

 $\implies f(x+\beta) - f(x)$ is quasiperiod α (why?)

Hence $f(x + \alpha) - f(x)$ is with quasiperiod $m\beta$

$$f(x + \beta) - f(x)$$
 is with quasiperiod $n\alpha$ (why?)

$$\Rightarrow f(x+\alpha) - f(x) = f(x+\alpha+m\beta) - f(x+m\beta)$$
$$f(x+\beta) - f(x) = f(x+\beta+n\alpha) - f(x+n\alpha)$$

$$\implies f(x+\alpha) - f(x+\beta) = f(x+\alpha+n\alpha) - f(x+\beta+n\alpha)$$

$$\implies f(x+\alpha-\beta)-f(x)=f(x+\alpha-\beta+n\alpha)-f(x+n\alpha)$$
 (: replace x by $x-\beta$)

$$\implies f(x+n\alpha) - f(x) = f(x+n\alpha + (\alpha-\beta)) - f(x+(\alpha-\beta))$$

$$\implies f(x+n\alpha)-f(x)$$
 is a function with quasiperiod $\alpha-\beta$ (1)

$$\implies f(x + (\alpha - \beta)) - f(x)$$
 is a function with quasiperiod $n\alpha = m\beta$ (: Note)

$$\implies f(x + (\alpha - \beta)) - f(x)$$
 is with quasiperiod $mn\alpha$

$$f(x + (\alpha - \beta)) - f(x)$$
 is with quasiperiod $mn\beta$

$$\Rightarrow$$
 $f(x + mn\alpha) - f(x)$ is with quasiperiod $\alpha - \beta$

$$f(x + mn\beta) - f(x)$$
 is with quasiperiod $\alpha - \beta$

$$\implies f(x+mn\alpha) - f(x+mn\beta)$$
 is with quasiperiod $\alpha - \beta$

$$\implies f(x + mn(\alpha - \beta)) - f(x)$$
 is with quasiperiod $mn(\alpha - \beta)$

$$\implies$$
 $f(x)$ is is with quasiperiod $mn(\alpha - \beta)$ (: f is bounded and apply problem 3)

5. Let n and ℓ be integers such that $n \geq 2$ and $\ell \geq n+1$. Suppose that $\lambda_1, \lambda_2, \dots, \lambda_{n-1}, m_1, m_2, \dots, m_{\ell}$ are nonnegative numbers such that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_{n-1}, m_1 \geq m_2 \geq \dots \geq m_n \geq \dots \geq m_{\ell}$ and

$$\sum_{i=1}^{\ell} m_i = \sum_{i=1}^{n-1} \lambda_i (n-i),$$

$$\sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} \lambda_i (n-i) \quad \text{for} \quad k = 1, 2, \dots, n-2.$$

Let $m_1' \ge m_2' \ge \cdots \ge m_{\ell-1}'$ be a rearrangement of $m_1, m_2, \cdots, m_{n-1}, m_n + m_\ell, m_{n+1}, m_{n+2}, \cdots, m_{\ell-1}$. Then

$$\sum_{i=1}^{\ell-1} m_i' = \sum_{i=1}^{n-1} \lambda_i (n-i) \quad \text{and}$$

$$\sum_{i=1}^{k} m_i' \leq \sum_{i=1}^{k} \lambda_i (n-i) \quad \text{for} \quad k = 1, 2, \dots, n-2.$$

Proof:

The required equality follows from the fact that $\sum_{i=1}^{\ell-1} m_i' = \sum_{i=1}^{\ell} m_i$. Now we prove the inequalities. Suppose that $m_t' = m_n + m_\ell$ where $t \leq n$. We can see that

$$m'_{i} = \begin{cases} m_{i}, & i = 1, 2, \dots, t - 1 \\ m_{i-1}, & i = t + 1, t + 2, \dots, n. \end{cases}$$

Suppose, to the contrary of the conclusion, that $\sum_{i=1}^{j} m'_i > \sum_{i=1}^{j} \lambda_i (n-i)$ for some integer j where $t \leq j \leq n-2$. Then

$$2m_n \geq m_n + m_\ell$$

$$= m'_t$$

$$= \sum_{i=1}^j m'_i - \sum_{i=1}^{j-1} m_i$$

$$> \sum_{i=1}^j \lambda_i (n-i) - \sum_{i=1}^{j-1} \lambda_i (n-i)$$

$$= \lambda_j (n-j).$$

Hence $m_n > \lambda_j(n-j)/2$.

Then

$$\sum_{i=1}^{n-1} \lambda_{i}(n-i) = \sum_{i=1}^{\ell-1} m'_{i}$$

$$\geq \sum_{i=1}^{j} m'_{i} + \sum_{i=j+1}^{n} m'_{i}$$

$$= \sum_{i=1}^{j} m'_{i} + \sum_{i=j}^{n-1} m_{i}$$

$$\geq \sum_{i=1}^{j} m'_{i} + (n-j)m_{n}$$

$$> \sum_{i=1}^{j} \lambda_{i}(n-i) + \lambda_{j}(n-j)^{2}/2$$

$$\geq \sum_{i=1}^{j} \lambda_{i}(n-i) + \lambda_{j} \sum_{i=j+1}^{n-1} (n-i)$$

$$\geq \sum_{i=1}^{n-1} \lambda_{i}(n-i).$$

Thus we obtain $\sum_{i=1}^{n-1} \lambda_i(n-i) > \sum_{i=1}^{n-1} \lambda_i(n-i)$; this absurdity confirms the inequalities.

6. An object is moving to the right on the real line. Let u(s) denote the velocity of the object at the position s on the real line. Then the time needed for the object moving from position s_1 to position s_2 ($s_1 < s_2$) is

$$\int_{s_1}^{s_2} \frac{1}{u(s)} \, ds.$$

Proof Let s(t) and v(t) denote the position and the velocity, respectively of the object at time t. Suppose that $s(t_1) = s_1$, and $s(t_2) = s_2$. First assume that $u(s) \neq 0$ for $s_1 \leq s \leq s_2$. Then

$$\int_{s_1}^{s_2} \frac{1}{u(s)} ds = \int_{t_1}^{t_2} \frac{1}{u(s(t))} ds(t)$$
$$= \int_{t_1}^{t_2} \frac{1}{v(t)} s'(t) dt$$
$$= t_2 - t_1.$$

And $t_2 - t_1$ is just the time needed for the object to move from s_1 to s_2 .

Next consider the case that u(s) = 0 for some $s, s_1 \le s \le s_2$. For example, $u(s_1) = 0$

and $u(s) \neq 0$ for $s_1 < s \leq s_2$. Then

$$\int_{s_1}^{s_2} \frac{1}{u(s)} ds = \lim_{s' \to s_1^+} \int_{s'}^{s_2} \frac{1}{u(s)} ds$$

$$= \lim_{s' \to s_1^+} t_2 - t' \text{ (where } s(t') = s')$$

$$= \lim_{t' \to t_1^+} t_2 - t'$$

$$= t_2 - t_1.$$

This completes the proof.

7. Two cars left city A at the same time and moved forward along a straight highway which connects city A and city B. These two cars arrived city B at the same time. Show that there must exist someplace (neither city A nor city B) on the highway where two cars had the same velocity.

Proof Let C_1 , C_2 denote the two cars. Use the interval [0, 1] to represent the straight highway which connects city A and city B. Let $u_1(s)$ be the velocity of car C_1 at position s $(0 \le s \le 1)$, and $u_2(s)$ be that of car C_2 . Assume that both $u_1(s)$ and $u_2(s)$ are continuous functions. We need to show that $u_1(s) = u_2(s)$ for some s with 0 < s < 1. Suppose, to the contrary, that $u_1(s) \ne u_2(s)$ for all s with 0 < s < 1. Then either $0 \le u_1(s) < u_2(s)$ for all 0 < s < 1 or $0 \le u_2(s) < u_1(s)$ for all 0 < s < 1, which implies that

either
$$\int_0^1 \frac{1}{u_2(s)} ds < \int_0^1 \frac{1}{u_1(s)} ds$$
 or $\int_0^1 \frac{1}{u_1(s)} ds < \int_0^1 \frac{1}{u_2(s)} ds$.

Using Problem 6, we see that the time needed for car C_1 to move from city A to city B and that for car C_2 are not equal. This is a contradiction.